Rheological profile across the NE Japan interplate megathrust in the source region of the 2011 Mw9.0 Tohoku-oki earthquake

نویسنده

  • Ichiko Shimizu
چکیده

A strength profile across the NE Japan interplate megathrust was constructed in the source region of the 2011 Tohoku-oki earthquake (Mw9.0) using friction, fracturing, and ductile flow data of the oceanic crustal materials obtained from laboratory experiments. The depth-dependent changes in pressure, temperature, and pore fluid pressure were incorporated into a model. The large tsunamigenic slips during the M9 event can be explained by a large gradient in fault strength on the up-dip side of the M9 hypocenter, which was located 17 to 18 km beneath sea level. A large stress drop (approximately 80 MPa) induced by the collapse of a subducted seamount possibly triggered the M9 earthquake. In the deep (>35 km) part of the thrust fault, where M7-class Miyagi-oki earthquakes have repeatedly occurred, plastic deformation occurs in siliceous rocks but not in gabbroic rocks. Thus, the asperity associated with the M7-class earthquakes was most likely a gabbroic body, such as a broken seamount, surrounded by siliceous sedimentary rocks. The conditionally stable nature of the surrounding region can be explained by the frictional behavior of wet quartz in the brittle-ductile transition zone. In contrast to the deep M7-class asperity, the M9 asperity (i.e., a region that was strongly coupled before the M9 Tohoku-oki earthquake) extended to a large area of the plate interface because shear strength is relatively insensitive to lithological variation at intermediate depths. However, the along-arc extension of the M9 asperity was constrained by fluid-rich regions on the plate interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A detailed source model for theMw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records

The 11 March 2011 Mw9.0 Tohoku-Oki earthquake was recorded by an exceptionally large amount of diverse data offering a unique opportunity to investigate the details of this major megathrust rupture. Many studies have taken advantage of the very dense Japanese onland strong motion, broadband, and continuous GPS networks in this sense. But resolution tests and the variability in the proposed solu...

متن کامل

Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles

Oki earthquake. Here we combine deterministic inversion and dynamically guided forward simulation methods to model over one thousand high-rate GPS and strong motion observations from 0 to 0.25 Hz across the entire Honshu Island. Our results display distinct styles of rupture with a deeper generic interplate event ( Mw8.5) transitioning to a shallow tsunamigenic earthquake ( Mw9.0) at about 25 k...

متن کامل

Ground Shaking and Seismic Source Spectra for Large Earthquakes around the Megathrust Fault Offshore of Northeastern Honshu, Japan

Large earthquake ruptures on or near the plate boundary megathrust fault offshore of northeastern Honshu, Japan, produce variable levels of regional highfrequency ground shaking. Analyses of 0.1–10 Hz strong ground motion recordings from K-NETand KiK-net stations and 0.3–3.0 Hz short-period recordings from Hi-net stations establish that the shaking variations result from a combination of differ...

متن کامل

Numerical modeling of long-term earthquake sequences on the NE Japan megathrust: comparison with observations and implications for fault friction

We use numerical modeling to investigate fault properties that explain key features of the 2011 Mw 9.0 Tohoku-Oki earthquake as well as the overall regional behavior of the NE Japan Megathrust. In particular, we study the possibility that slip near the trench resulted from thermal pressurization on a shallow patch of the megathrust, and investigate whether low-velocity friction on that patch is...

متن کامل

Structural heterogeneity in the megathrust zone and mechanism

[1] The great 2011 Tohoku‐oki earthquake (Mw 9.0) and its 339 foreshocks and 5,609 aftershocks (9–27 March 2011) were relocated using a three‐dimensional seismic velocity model and local P and S wave arrival times. The distribution of relocated hypocenters was compared with a tomographic image of the Northeast Japan forearc. The comparison indicates that the rupture nucleation of the largest ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014